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Motivation Training Strategy to Improve Generalization

* Increase of multimodal misinformation and its alarming impact on society To reduce the bias and improve model generalization:

Existing datasets for multimodal fake news detection: VNME dataset: an extension of the ME dataset with Visual News (VN) dataset [2]
. Rather small size More samples from many domains, topics, and events
+ Limited set of specific topics Using real images and their associated captions of VN as rea/samples
Creating fake samples using the aforementioned manipulation techniques as follow:

As a consequence: ——
Manipulation Strategy VNME
Dataset

* Poor generalization capabilities of models (Img) (Evt)  (All)
* Not applicable to real-world data Original v v v

Visual News EVRep

Fakelm

Original

Proposed Models MediaEval EvRep

Fakelm

« Three multimodal approaches for effective fake news detection
« Based on state-of-the-art multimodal transformers
« Get a text-image pair as input and predict fake or real.

» We train our best model (MLP-CL/P) based on three above training data variants
to evaluate their impact.

> We evaluate the MLP-CLIP (VNME-Ens) that combines the outputs of the previous

- N N\ (O ~ A models by majority voting.
( Image. [ Text Fusion {Classification y Majorty J
Embedding Embedding

1 . . .
1- BERT-ResNet” Model: [D'St'IBERTJ ats [RGSNet'SOJ [ConcatJ [ MLP J Table 2. Accuracy (Acc) and number of samples predicted as fake (Ny) and real (Ny) for different models and test data
manipulations (hnumber of fake / real ground-truth samples). Models denoted with # are solely trained on ME 2015. Note that
2 - models with * are reproduced and that VNME-Ens is an ensemble of MLP-CLIP models trained on VNME.
2- MLP-CLIP" Model: [ cup | &! [ cup | | concat| [ MLp | P
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Method 717 / 1,215 0/100 100/ 0 0/100 100/ 0 6/94 206 / 294
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3- CLIP-MMBT® Model : \\[BERTBE‘SGJ;*’\[ cup | [MMBTL m\[MMBTj

BDANN®, 0.76 16 84 0.84 12 88 0.12 15 85 085 19 81 0.19 17 83 0.77 0.55
Spotfake®, & 0.84 37 63 063 30 70 030 18 82 082 37 63 037 37 63 0.61 0.54
1Bidirectional Encoder Representations from Transformers — Residual Network (BERT-ResNet) BERT-ResNet, & 0.87 28 72 072 25 75 025 21 79 079 28 72 028 28 72 0.68 0.54
ZMulti Layer Perceptron — Contrastive Language-Image Pre-training (MLP-CLIP) CLIP-MMBT, * 0.75 3 97 097 10 9% 010 2 98 098 4 9% 004 4 96 0.90 0.59
3Contrastive Language-Image Pre-training - MultiModal BiTransformers(CLIP-MMBT) MLP-CLIP, % 0.93 2773 073 40 60 040 31 69 0.69 51 49 051 39 61 041 0.54
« VNME-Img 0.69 3 97 097 90 10  0.90 5 95 095 24 76 024 16 84  0.80 0.77
« VNME-Evt 0.70 6 94 094 20 80 0.20 19 81 081 75 25 0.75 47 33  0.51 0.64
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: « VNME-Ens 0.70 6 94 094 100 0 1.00 3 97 097 62 38 0.62 35 65 0.63 0.83
Experimental Setup and Results
« Compared our models with reproduced BDANN [3] and Spotfake [4] 0=
. . : 0 —7 . - .
« Used MediaEval 2015 and MediaEval 2016 for the comparison O- Experlmental Flndlngs .
e MLP-CLIP outperformed our models and reproduced models in both datasets p—
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Motivation: Test model generalization in realistic use cases ~
| J Performance robustness for models trained
ldea: Manipulate the content and evaluate model performance on new test set mprove with a modality-specific data manipulation on

Generalization manipulated sets specific to that modality.

How? Manipulation of rea/ posts from MediaEval (ME) 2015 [1] dataset (Figure 1) :

/
Event Replacement : Events have been randomly replaced wih other events in
the dataset. This changes the ground truth of all samples from rea/to fake. 4 A
Best overall performance averaged over all test sets
Event Removal: All events have been removed from text. As the ground for MLP-CLIP (VNME-Ens) which is an ensemble of all ‘Most Reliable
truth can be both real or fake, one expert manually annotated the samples. \models trained with all modifications. /> in Applications

Replacement with Fake Image: Images have been replaced with other images
depicting a different event in the test set. The new ground truth is fake.

Summary

1. Proposed three multimodal fake news detection models
2. Our MLP-CLIP outperformed baselines on the MediaEval 2015 dataset
3. Create more diverse test scenario by content manipulation

Replacement with Real Image: image have been replaced with similar image
depicting same event. All samples remain real after the manipulation.

Post Image postText Event Replacement Event Removal 4. Provide a solution to improve model generalization
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