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Motivation 
 

• Increase of multimodal misinformation and its alarming impact on society 
 

Existing datasets for multimodal fake news detection:  

• Rather small size 

• Limited set of specific topics  

 

As a consequence: 

• Poor generalization capabilities of models  

• Not applicable to real-world data 

Proposed Models 

• Three multimodal approaches for effective fake news detection 

• Based on state-of-the-art multimodal transformers  

• Get a text-image pair as input and predict fake or real. 

New Test Scenarios 
 

Motivation:  Test model generalization in realistic use cases 

Idea:  Manipulate the content and evaluate model performance on new test set 

How? Manipulation of real posts from MediaEval (ME) 2015 [1] dataset (Figure 1) : 

• Replacement with Real Image: image have been replaced with similar image 

depicting same event. All samples remain real after the manipulation. 

• Event Replacement : Events have been randomly replaced wih other events in 

the dataset. This changes the ground truth of all samples from real to fake. 

• Event Removal: All events have been removed from text. As the ground 

truth can be both real or fake, one expert manually annotated the samples. 
 

• Replacement with Fake Image: Images have been replaced with other images 

depicting a different event in the test set. The new ground truth is fake.  
 

Figure 1. Manipulation techniques and results of (a) Spotfake (b) MLP-CLIP(Ens). The border color denotes the ground 

truth (green: real, red: fake). Images are replaced with similarones due to licensing issues. 

Training Strategy to Improve Generalization 

To reduce the bias and improve model generalization:  

• VNME dataset: an extension of the ME dataset with Visual News (VN) dataset [2]  

• More samples from many domains, topics, and events 

• Using real images and their associated captions of VN as real samples 

• Creating fake samples using the aforementioned manipulation techniques as follow:   

 We train our best model (MLP-CLIP) based on three above training data variants 

to evaluate their impact. 

 We evaluate the MLP-CLIP (VNME-Ens) that combines the outputs of the previous 

models by majority voting. 

Experimental Findings :  

Performance drop on manipulated test 

variants for models trained only on ME. 
       Poor 

Generalization 

    Improved 

Generalization 

Performance robustness for models trained 

with a modality-specific data manipulation on 

manipulated sets specific to that modality. 

Best overall performance averaged over all test sets 

for MLP-CLIP (VNME-Ens) which is an ensemble of all 

models trained with all modifications. 

 Most Reliable 

in Applications 
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Table 2. Accuracy (𝐴𝑐𝑐) and number of samples predicted as fake (𝑁𝐹) and real (𝑁𝑅) for different models and test data 

manipulations (number of fake / real ground-truth samples). Models denoted with ‡ are solely trained on ME 2015. Note that 

models with * are reproduced and that VNME-Ens is an ensemble of MLP-CLIP models trained on VNME. 

 

Dataset 
Manipulation Strategy VNME 

(Img) (Evt) (All) 

Visual News 

Original          

EvRep ×        

FakeIm    ×    

MediaEval 

Original          

EvRep ×       

FakeIm    ×    

Summary 

1. Proposed three multimodal fake news detection models 

2. Our MLP-CLIP outperformed baselines on the MediaEval 2015 dataset 

3. Create more diverse test scenario by content manipulation 

4. Provide a solution to improve model generalization 

Future work 

1. Explore different kinds of manipulation techniques 

2. Different fusion strategies for the ensemble mode 

Experimental Setup and Results 

• Compared our models with reproduced BDANN [3] and Spotfake [4] 

• Used MediaEval 2015 and MediaEval 2016 for the comparison 

• MLP-CLIP outperformed our models and reproduced models in both datasets 

1Bidirectional Encoder Representations from Transformers − Residual Network (BERT−ResNet) 

2Multi Layer Perceptron − Contrastive Language−Image Pre−training (MLP−CLIP)  

3Contrastive Language−Image Pre−training − MultiModal BiTransformers(CLIP−MMBT) 
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