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Kl Introduction

e News spreading is one of the most effective mechanisms for spreading information.

e Due to globalization, many events from different areas are internationally relevant such as
COVID-19, and Brexit etc..

e News coverage directly catalogs the occurrence of specific events and indicates the local as
well as global opinions of stakeholders.

 Representation of cross-lingual information about an event: to understand the entire story of
current regional and international events that belong to diverse cultures.

 Determinants for news coverage are economic conditions and association between countries,
cultural values (including publishing languages) , geographical juxtaposition, and political
alignment of news publishers.

Objectives

e Observing differences to news spreading on different events published by multiple publishers to
understand what may influence the differences in the spreading patterns.

e Analyzing the news reporting differences and evolution of discussions across political and
economic barriers using topic modelling.

* Developing a methodology to perform classification of news articles based on semantic
knowledge including a wide range of common sense inferences and sentiments of news
headlines.
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An approach to automatic barrier profiling based on the news meta-data. Data extraction from the
Event Registry is the first step. Meta-data extraction through Google and Wikipedia scrapping is the
second step. The third step is to label the news articles after calculating the euclidean distances.
The classification with the clasosical machine learning models, deep learning, and transformer-based
methods is performed in the last step.
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The bar charts present the distribution of different p033|ble trends of sentlments across different
categories and barriers (from left to right). The sentimental trends vary in four different types (see
on the x-axis): trend1, and trend4 represent decrement and increment respectively in the
percentage of news articles (see on the y-axis) with negative sentiment to neutral and then to
positive: trend2, and trend3 represent decrement and increment respectively in the perocentage of
news articles with neutral sentiments than positive and negative sentiments
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B Results

A novel methodology to analyze the news spreading barriers on different kinds of news events.
A novel approach to enhance the topic modeling technique and understand political and economic

differences in news reporting.
e An approach to barrier profiling by automatically annotating and classifying the news articles for the

different barriers.
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The green bars show the average Fl-scores of all the ten categories for LSTM and BERT using
commonsense-based semantic knowledge and sentiments. The gray bars show the average F1-
scores of all the ten categories for LR, LSTM, and BERT using only headline text. The x-axis shows
the groups of bars for all five barriers whereas the y-axis shows the average F1-score

Bl Conclusions

Our findings suggest that:

Events which may in some way involve political benefits are mostly published by those
publishers which are not politically neutral.

Countries with shorter time-zone differences and similar cultures tend to propagate news
between each other

Geographical size of a news publisher’s country is directly proportional to the number of
publishers and articles reporting on the same information

The political alignment of a newspaper and the economic condition of a country influence news
spreading

Common sense-based semantic knowledge and sentiments of news headlines help to
classifying the news-spreading barriers
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